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ABSTRACT

The problem of irreversibility in thermodynamics was revisited and analyzed on the
microscopic, stochastic, and macroscopic levels of description, It was demonstrated that
Newtonian dynamics can be represented in the Reynolds form when each dynamical vari-
able is decomposed into the mean and fluctuation components. Additional equations cou-
pling fluctuations and the mean values follow fromn the stabilization principle. The main
idea of this principle is that the flue.tuati(ms must be selected from the condition that they
suppress the original instability down to a neutral stability. Supplemented by the stabi-
lization principle, the Hamiltonian, or Largranian formalisms can describethe transition
from fully reversible to irreversible motions as a result of the decomposition of chaotic mo-
tions (which are very likely to oceur in many-body problems) into regular (macroscopic)
motions and fluctuations.

On the stochastic level of description, new phenomeniological foree with non-Lipschitz
properties is introduced. This force as a resultant of a large number of collisions of a
selected particle with other particles, has characteristics which are uniquely defined by the
thermodynamical parameters of the process under consideratjon, and it represents a part
of the mathematical formalism describing random-walk-like process without invoking any
probabilistic. arguments.

Additional non- Lipscitz thermodynamical forces were incorporated into macroscopic
models of transport phenomena in order to introduce a time scale. These forces are effective
only within a small domain around equilibria. Without causing any changes in other
domains, they are responsible for finite time of approaching equilibria, Such a property is
very important for interpretation of irreversibility on the macroscopic scale.

INTRODUCTION:
Transport phenomena such as thermal conductivity and diffusion represent non equi-

librium thermodynamical processes which are described by parabolic partial differential
equations of the following type:
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It is known that Eq. (1) subject to the initial condition

U == uo(x) (2)

has a unique bounded solution for t> 0.

However, for t <0 the same problem is ill-posted, and that expresses the fundamental
propert y of irreversibilit y of thermal conductivit y and diffusion. Actually this property
direct 1 y follows from t he second law of t hermodyn ami cs.

Although solutions to Eq. (1) arein sufficiently goo cl agrcements with experiments,
there are still some logical difficultures in reconciliation of this macroscopical phenomeno-
logical model with the fully reversible Hamiltonian dynamies on the microscopic level,
since, actually the irreversible processes described by Eq. (1), are completely composed
of reversible events, and that is known as the irreversibility paradox. However, strictly
speaking, the formal derivation of Eq. ( 1) from the microscopic Hamiltomian mechanics
requires some additional arguments of a probabilistic nature. But can these arguments be
represented in terms of classical mechanics™ Or, more precisely, can they be replaced by
some equivalent mechanical forces on the microscopic level?

1. NON-LIPSCHITZ MECHANICS

Turning to governing equations of classical dynamics:

d 9L OL_OR |

dt 05~ Og o DlE ®
where L isthe Lagrangian, ¢i» ¢i are the generalized coordinates and velocities, and R is the
dissipation function, one should recall that the stiucture of R(¢i, . . dn)is not prescribed
by Newtons laws: some addit ional assumpt ions are to be made in order to define it. The
“nat ural” assumption (which has been never challenged) is tliat t hese fund ions can be
expanded in Taylor series with respect to equilibrium states: ¢i = O. Obviously this
requires the existence of the derivative:

|———*~32R |< oo at ¢g; — 0

aqi dg;

The departure from that condition was proposed in [8-10], where the following dissi-
pation function was int1 oduced:

1 = 07'1', k+1
R = i — (5 4
¢ k+1>;“|;aq,-‘1" (4)
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in which

P
k= —— <1, 1
b2 p> ®)

while p is a large odd number

By selecting large p, one can make k close to 1 so that Eq. (4) is almost identical to
classical one(whenk = 1) everywhere excluding a small neighborhood of the. equilibrium
point ¢; = O, while at this point:

0’R
———— |5 o0 at ¢g; —» 0 6
e I oo at i (©)
Hence, the Lipschitz condition is violated, the friction force F; = —%}— grows sharply

at the equilibrium point, and then it gradually approaches its “classical” value. This
effect can be interpreted as a mathematical representation of a jump from static to kinetic
friction, when the dissipation force does not vanish with the velocity.

It appears that this “small” difference betweenthe friction forces at k = 1 andk < 1
leads to fundamental changes in Newtonian dynamics. Inorder to demonstrate it, we will
consider the relationship between the total energy E and the dissipation function R:

dE . OR
E_—E‘i—gd—i_»-(kﬂ)lz ©

Within a small neighborhood of an equilibriwin state (where the potential energy can
be set zero) the energy E and the dissipation function It have the order, respectively:

E~g Regft"at E— 0 (8)
Hence, the as ympot at ical form of (7) can be present ed as:

dlEtl = AEL}L—l at E -+ O, A = const 9
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If A> 0 andk < 1, the equilibrium state ¥ = O is an attractor where the. Lips-
chitz condition (|dE/dE |- coat E— O) is violated. Sucha terminal [8] attractor is
approached by the solution originated at £ = AE, > 0, in finite time:

1=k
t / dE 2N E,? .
0o — T = o0

sk, AET  (1-k)|A]|

Obviously, this integral diverges in classical cast? k> 1., wheret, — 0o. The motion
described by (9) has a singular solution E = O and a regular solution:

1-k 1 2
E=[AE™ + A1 - k)] ™

In a finite time the motion can reach the equilibrium and switch to the singular
solution E = 0, and this switch is irreversible.

As well-known from dynamics of non-conservative systems, dissipative forces can
dest abilize the motion when t hey feed t he extern al energy into the system (the t rans-
mission of energy from laminar to turbulent flow in fluid dynamics, or from rotations to
oscillations in dynamics of flexible systems). In terms of (9)it would mean that A > 0,
and the equilibrium state E = O becomesa terminal repeller [8].

If the initial condition is infinitely close to this repeller, the transient solution will
escape it during a finite time period:

=< 00

- F\Eo dE  2AEST
e—w0 AE% ~ (1-k)A

while for a regular repeller, the time would be infinite.

Expressing Eq. (9)in terms of velocity at i = 1, ¢1=v,

O = Bvk, B = const > (), (lo)

one arrives at the following solution:

v = :!:{ [B(L — k)t]b+2}l/2 (11)

As in the case of a terminal attractor, herethe motion is also irreversible: the time-
backward motion obtained by formal time inversion ¢ — --tin Eq. (11) is imaginary, since
p is an odd number (see Eg. (5)).
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But in addition to that, terminal repellers possess even more surprising characteristics:
the solution (11 ) becomes totally unpredictable. Indeed, two different motions described
by the solution (11) are possible for “almost the same” (v, == +€ — 0, or v, = —¢ —
O att=-- 0) initial conditions.

Thus, a terminal repeller represents a vanishingly short, but infinitely powerful “pulse
of unpredictab ility” which is pumped into the syst em via tern iinal dissipative? forces. Qb-
viously failure of the uniqueness of the solution here results from the violation of the
Lipschitz condition at v = O.

Hence, the non-Lipschitz forces 0R/J¢iin Eq. (3) following from Egs. (4) and (5)
change the most fundamental property of the Newtonian mechanies: its determinism. At
the same time, these forces aflect only the dissipation function which is not prescribed by
t he Newt on 'S laws any way.

Let us turn to stochastic processes which connect the microscopical mechanics and
thermodynamics. These processes are based upon some probabilistic arguments which can
not be formall y derived from Newtonian Intdm.nits. But may be they can be derived from
non- Lipschitzian version of Newtonian mechanics? In the 11ext item based upon non-
Lipschitz forees we will introduce a pure mechanical model of random walk-the simplest
stochastic process - whose macroscopical interpret at ion leads t o Eq. (1).

2. MECHANICAL MODEL OF RANDOM WALK
A random walk is a stochastic process where changes occur only at fixed times; it
represents the position at time ¢, of a particle taking a random “step” x,, independently

of its previous ones.

in order to implement this process based only upon tilt? Newton's laws, consider a
rectilinear motion of a particle of unit mass driven by a non-Lipschitz force:

. 1/3 m! kK
v=wvv "sinwt, v =const,[y] = —;— 12)
secd—k
T=v (13)
where v and z are the particle velocity and position, respectively.
Subject to zero initial condition:
v=0 at t=0, (14)
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Eg. (10) has a singular solution:
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and a regular solut ion:

4 ' 3/2
v =4 (-3—53 sin? g ) (16)

These two solutions co-exist at t = O, and that is possible because at this point the
Lipschiz condition fails:

ot -1 .
|b£|t~0 = kvof Tsinwt|g - oo (17)
v
Since
o
0—3>0 at |v]£0, t>0, (18)

the singular solution (15) is unstable,and the particle departs from rest following the
solution (16). This solution has two (positive and negative) branches (since the power in
(16) includes the square root), and each branch can be chosen with the same probability
1/2. It should be noticed that as a result of (1 7), the motion of the particle can be initiated
by infinitesimal disturbances (that never can occur when the Lipschitz condition is in place:
an infinitesimal initial disturbance cannot become finite in finite time).

Strictly speaking, the solution (16) is valid only in the tire? interval

ogts-“;, (19)

and at t = 2 it coincides with the singular solution (15).

For t > 27 /w, EQ. (15) becomes unstable, and the motion repeats itself to the accuracy
of the sign in Eq. (16).

Hence, the particle velocity v performs oscillations with respect to its zero value in
such a way that the positive and negative branches of the solution (16) alternate randomly
after each period equal to 27 /w.



Turning toEq. (13), one obtains the distal ice bet ween two adjacent equilibrium
positions of the particle:

e (4 w \** 5/2,3/2
r; - Ti-1 T :t/ (— sin 7t> dt = G4(3w)"‘/ A1 = 4 (20)
0 3w 2

Thus, the equilibrium positions of the particle are:

xg = 0,21 = 2h,z9 = £h £ L.ete. (22)

while the signs are randomly alternat ed with the equal probabilit y 1/2.

Obviously, the particle preforms an unrestrict ed symmetric random walk: after each
time period

T=2=" (23)
w

it changes its value on4-h (see Eq. (22)).

The probability density u(x, t)is governed by the following difference equation:

u(z,t + 1) = %u(at — ht) + %u(ar + ) (24)
while
/ u(x,t)dr =1 (25)

3. PHENOMENOLOGICAL FORCE

Thus, as demonstrated above, a non- Lipschit z force

: _ 4 .
F = mpol/3 sinwt =+ %Jésin ‘g—tsmwt (26)
w

applied to a particle of the mass m, leads to a classical random walk.
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It should be stressed that the governing equations (12), ( 13) are fully determinis-
tic: they are bad upon the Newton's laws. The stochasticity here is generated by the
alternating stability and instability effects due to failure of the Lipschitz conditions at
equilibria.

Let us analyze the properties of the force ('28).

First of all, the time average of this force is zero:

F=0 27)

since, as follows from Eq. (26), the signs + and - have equal probability.

For the same reason, the ensemble average of F' is also zero:

<F>=0 (28)

The work clone. by the force (26) during one step is zero:

2w [/ 4v 2 2nfw W
A= / Fudt = +v —) / sin® —t sinwitdt = 0. (29
i \3 il 2

Sine.c the time average of the particle’s kinetic energy can be expressed via the temperature,
one obtains:

4y 3orem/e w 5 [ 4v 3 K1
~2 .6
- g Ztdt = — | — - 30
Ve = (3 ) /0 sin 2t t = 3 (3 ) m (30)

Then the only unspecified parameter v in Eq. (26) is expressed via the. temperature:

V= 3w -8—9&; (31)
4 Srm

Here T is the absolute temperature, and K is the 1 3oltzmann’s constant.

The paramecter w ~! has the order of the time period between collisions of the particle:
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wn L ~ 10M-— (32)

T sSeC

On the macro-scale this is a very large number , and one can consider a cent inuous approx-
imation assuming that

W — 00 (33)
Then, as follows from Eqs. (20), (23), and (31) :

‘2 Eds al
r— 0,11 - 0, and L - 0.19 KT = 2D (34)
T

m

and t herefore, Eq. (24) can be replaced by t he Fokker-Planck equation, i.e., by an one-
dimensional version of Eq. (1). It is interesting to emphasize that the diffusion coefficient
D is defined by the amplitude v of the non- Lipschitz force (26).

Now the following question can be asked: does the force (26) exist in a sense that it
can be detected by direct measurements on the mitxmc.epic level’? Probably, not. Indeed,
on that level, this force is a resultant of a large number of collisions with other particles.
However, on the stochastic level as an intermediat e between the micro-and-m acro-levels,
the phenomenological force (26) represents a part of the mathematical formalism, and it
can be accepted.

As follows from Eq. (26), on a micro-scale of time

t ~ 7T (35)

the system (12), (13) is not conservative, and the motion is irreversible. Moreover, each
time the particle arrives at equilibrium point, it totally “forgets)’ its past.

On the contrary, on a macro-scale of time when

t > (36)
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the system ( 12),(13) can be treated as conservative based upon Eqs. (28), and (29), and
therefore, it is fully reversible. This means that the particle whose motion is described by
Eq. ( 12) and ( 13), canreturn to its original position passing through all of its previous
Steps backward; however, the probability of such an event will be vanishingly small (but
not zero!), or, in other words, the period of time fo during which this event can occur is
very large (but finite!):

T L tyg < o0 (37)

4. NON-LIPSCHITZ MACROSCOPIC EFFECTS:

Turning back to the macroscopic equation (1), one can notice its inconsistency with
the results discussed in the last section, and in part icular, with the condition (37). Indeed,
Eq. (1) does not have any time scale which would allow to implement the condition (37):
the time of approaching a thermodynamical equilihrium is unbounded, and therefore, Eq.
(1) includes any reversible solutions even if to— o0o. The only logical way out of this
situation is to introduce a time-scale to into Eqg. (1) so that the time of approaching an
equilibrium would be finite. Then one can argue that this time is not large enough to
include reversible solutions. In order to do that, let us turnto Eq. (1), and, for the sake
of cone.rdeness, t reat it as an equat ion for t hermal conduct, ivit y. Then, the relationship
bet ween the heat flow q and the temperature u ca be sought in the following form:

q = q(Vu) (38)

It should be (emphasized that the? function (3S) is not prescribed by any macroscopic
laws, and therefore, it must be found from experiments. The basic mathematical assump-
tion about Eq. (38) is its expendability in Taylor series. Then, for small gradients:

q—_—_Xvu+~--'etC. (39)

where x is the thermal conductivit y, and this leads to Eq. ( 1). But even if higher order
gradients of u are taken into account, the time of approaching equilibria would still remain
unbounded.

However, there is another possibility in representing Eel, (3S) if one relax the Lipschitz
condition at yu = O. Indeed, instead of (39) one can write:

k—1
q= —X(y‘g> vV u-+---ete. (40)

€g
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where K has the form (5), and €0 has the dimensionality of V4, i.e.

leo] - [Vu] (41)

Eq. (40) is different from Eg. (39) only within aninfinitesimally small neighborhood of
the equilibria states where

wu t 0. (42)
otherwise
k-1
(—\-7—“) ~ 1 (43)
&g

One can verify that the Lipsch tz condition for the function (40) at \yu + O is violated:
| =—— |— 00 at Ju-—0 (44)
u

Mathematical consequences of this property will he discussed Mow.

Turning to Eq. (40), one can write the following equation instead of (1) :

Ju

5 = Ou\ 1 D= 20 -—((rest> 0 (45)

where x, ¢, and p are the coefficient of thermal conductivity, specific heat, and density,
respectively. Eq. (45) reduces to the classical diffusion equation:

Ju 0%u
a = Pow (o)

if k= 1.

Let us compare the solutions to Eqgs. (45) and (46) subject to the same initial and
boundary condit ions. Introducing the function:
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one obtains:

(19 1)/<Oz>

assuming separation of the variables:

u(e,1) = uy (tus(e)
one arrives at the following ordinary differential equation:
Uy = —Aut

where

1= [ (52) 7l (5:) o=
For k = 1(see Eq. (46)):
uy =u; eft, w5 0at ¢t oo
For k <1 (See Eq. 45):

= [(81) 1- -AQ - kyt/r-*

Here

ﬁ]ZU] at t::0
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5. MICROSCOPIC VIEW

In the previous sections, the problem of irreversibility in thermodynamics was dis-
cussed on the stochastic and macroscopic levels of description. This and all the next
sections Will be devoted to the same problem, but from the viewpoint of the microscopic
level of description. On that level, the microscopic state of a system may be specified in
terms of positions and moments of a constituent set of particles: the atoms and moleculas.
Within the Born-Oppenheimer approximation, it is possible to express the Hamiltonian
(or the Lagrangian) of a systemasa functions of nuclear variables, the (rapid ) motions of
elect rons having been averaged out. Making the additional approximation that a classical
description is adequat e, one can write the Lagrange cquat ions whi ch govern the microscopic
motions of the system:

d OL oL
._._.___——.——:0, ) == 1,2,"‘ ) I/—':VI/ r1 F’O
&g, g, : " i (59

Here ¢i and ¢i are the generalized coordinates and velocities characterizing the system, W
is the kinetic energy including translational componients (as well as rot ational components
if polyatomic molecules are considered), n is the potential energy representing the effects
of an external field (including, for example, the container walls), tht? particle interactions
and elastic collisions.

All the solutions to Eqs. (59) are fully deterministic and reversible if the initial con-
ditions are known exactly. But since the last requirement is physically unrealistic, small
errors in initial conditions will grow exponentially in case of instability of Eels. (59).
(Such an imitability may have the same origin as the instability in the famous three-body
problem), As a result of that, the solution to Eq. (59)at tains stochastic features, i.e.,
becomes chaotic, and therefore, it looses its determinism and reversibilit y. The connection
bet ween the chaotic inst ability and the. problem of irreversibili t y in thermodynamics was
stressed by I. Progogine [5]: “The structure of the equations of motion with “randomness”
on the microscopic level then emerges as irreversibility on the macroscopic level”. Based
upon the same ideas as those introduced by Prigogine, we will propose a different math-
ematical framework for their implement ati on. This framework exploits the stabilization
principle introduced and discussed in [11]. As will be shown below, this principle imposes
some additional constraints upon the motion, and that makes the solut ions to Eqs. (59)
irreversible.

6. ORBITAL INSTABILITY IN HAMILTONIAN MECHANICS

Most of the dynamical processes are so complex that their universal theory which
would capture all the details during all the time periods is unthinkable. That is why the art
of mathematical modeling is to extract only tht? fundamental aspects of the process and to
neglect its insignificant features, without losing the core of information. But "insignificant
features” 1snot a simple concept. Inmany cases cven vanishingly small forces can cause
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large changes in the dynamical system parameters, and such situations are intuitively
associated with the concept of the instability. Obviously the destabilizing forces cannot
be considered as “insignificant features, ” and therefore, they cannot be ignored. But
since they may be humanly indistinguishable in the? very beginning, there is no way to
incorporate them into the model. This simply means that the model is not adequate for
quantitative description of the corresponding dynamical process: it must be changed or
modified.

However, theinstability delivers an important qualitative? mformation: it manifests
the boundaries of applic.ability of the original model.

We will distinguish short and long-term instabilities.  Short-term instability occurs
when the system has alternative stable states. For dissipative? systems such states can be
represented by static or periodic attractors. Inthe very beginning of the post-instability
transition period, the unstable motion cannot be traced quantitatively, but it becomes more
and more deterministic as it approaches the attractor. Hence, a short-term instability does
not necessarily require a model modification. Usually this type of imitability is associated
with bounded deviation of position coordinates whose changes affect the energy of the
system. Indeed, if the growth of a position coordinate persists, the energy of tile system
would become unbounded.

The long term instability occurs when the system does not have an alternative stable
state. Such type of instability can be associated only with ignorable coordinates since
t hese coordinates do not effect the energy of the syst em. The long term instability is the
main cause of chaos. It can occur in tht? form of orbital instabilit y, Hadamard’s instability,
Reynolds instability, etc. We will illustrate the concept of long-term instability by the
orbital instability.

First we recall that a coordinate g, is called ignorable if it does not enter the La-
grangian funct ion L while the corresponding non-conservative generalized forces Q, or is
zero:

nx

= = 0, _ 60
» 0u = 0 (60)
therefore,

a—.L = P, = Const (61)

Ofa

it?., the generalized ignorable impulse P, is constant.

As follows from Eq.(61), there exist such states of dynamical systems (called stationary
motions) that all the position (i.e. non-ignorable) coordinates retain constant value while
the ignorable coordinates vary in accordaiice wit L a linear law. For example, a regular
precession of a heavy symmetric gyroscope is a stationary motion characterized by the
equation:

© = Const,p = Const, ¢ = Const (62)



where the angle of precession 1 and the angle of pure rotation ¢ are ignorable coordinates,
while the angle of nutation © - an angle formed by the axis of gyroscope and the vertical
is a position coordinate.

obviously, stationary motions are not stable with respect to ignorable velocities: a
small change in ¢, at t = O yields, as time progresses, an arbitrarily large change in the
ignorable coordinates themselves. However, since this change increases linearly (hut not
exponentially), the motion is still considered as predictable. In particular, the Lyapunov
exponents for stationary motions are zero:

5 1 d0)t

o = d(O)—»(l)n,lt——-»oo (.t_) 11&(—0)— = 0 (63)
However, in case of nonstationary motions) the ignorable coordinate can exhibit more
sophisticated behaviors. In order to demonstrate this, let us consider an inertial motion
of a particle M of unit mass on a smooth pseudosphere S having a constant negative

curvature:
G, = Const< 0 (64)

Remembering that trajectories of inertial motions mustbe geodesies of S, we will compare
two different trajectories assuming that initially they are parallel and that the distance
bet ween them, €g, is very small.

As shown in differential geometry, the distance between such geodesics will exponen-
tially increase: L
e = eeV ! Gy <0 (65)

Hence, no matter how small the? initial distance €0, the current distance € tends to infinity.
Let us assume now that the accuracy to which the initial conditions are known is

characterized by L.It means that any two trajectories cannot be distinguished if the
distance between them is less than L, i.e. if:

e< L (66)
The period during which the inequality (66), holds has the order:
1 L

At - In— (67)

|\/—~G'_0| €0
However, for
t >> At (68)

these two trajectories diverge such that they can be distinguished and must be considered
as two different trajectories. Moreover, the distance between them tends to infinity even
if €0 is small (but not infinitesimal). That is why the motion, once recorded, cannot
be reproduced again (unless the initial conditions are known exactly), and consequently,
it attains stochastic features. The Lyapunov exponent for this motion is positive and

const ant: _
1 V=Gt -
o= lim oo = \/: Go == Const > 0 (69)

t—oo , d(0)— 0 ( t ) €0
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Let us introduce a system of coordinates at the surface S: the coordinate ¢, along the
geodesic meridians, and the coordinate ¢ along t he parallels.  In differential geometry
such a system is called semi-geodesical. The square of the distance between adjacent point
on the pseudosphere is:

ds® = g1 dg} + 2012dq1dqs + 9224} (70)

where .
gn =1,02 =0, gy =~ Fﬁ_?‘/:("q' (71)

70

The Lagrangian for the inertial motion of the particle M on the pseudosphere is expressed
via the coordinates and their temporal derivates as:

. .9 1 /=Gy
L= gijdid; = 61 = Gi-¢ G g (72)
10
and, consequently,
oL
=0 73
0q; (73)
while oL
2 7 0,if 42 #0 (74)
)

Hence, ¢, and gz play roles of position and ignorable coordinates, respectively,

Therefore, an inertial motion of a particle ona pseudosphere is stable with respect
to the position coordinate ¢;, but it is unstable with respect to the ignorable coordinate.
However, in contradistinetion to the stationary motions considered above, here the in-
stability is characterized by exponential growth of the ignorable coordinate, and that is
why the motion becomes unpredictable. It can be shown that such a motion becomes
stochastic[1].

Instability with respect to ignorable coordinates can be associated with orbital insta-
bility. Indeed, turning to the last example, one can represent the particle velocity v as the
product :

In the course of the instability, the velocity magnitude |v|, and consequently, the total
energy, remain unchanged, while all the changes affect only 7, i.e. the direction of motion.
In other words, orbital instability leads to redistribution of the total energy between the
coordinates, and it is characterized by positive Lyapunov exponents.

The results described above were related to inertial motions of a particle on a smooth
surface. However, they can be easily generalized to motions of any finite-degree-of-freedom
mechanical system by using the concept of configuration space. Indeed, if the mechanical
system has N generalized coordinates ¢'(:= 1,2,..., N)and is characterized by the kinetic
energy:

W = ai5¢'¢’ (75)
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then the configurate ion space can be int roduced as an N- dimensional space with the follow-
ing metric tensor:
Qi (76)

while the motion of the system is represented by the motion of the unit-mass particle in
this configuration space.

Inorder to continue the analogy to the motion of the particle on a surface in actual
space we Will consider only two-dimensional subspaces of the N-dimensional configuration
spare?, without loss of generality. Indeed, a motion which is instable in any such subspace,
has to be qualified as an unstable in the entire configuration space.

Now the Gaussian curvature of a t wo-dimensional configurat ion subspace (¢!, ¢?) fol-
lows from the Gauss formula:

o - 1 a1 a1 D% asy
apjazy — a3, \ 9q'9q? 2 0q20q? 2 0q10q? )
- F;Y?.P(ls? Ays — P?lrg‘z“nﬂ (77)

where the connection coefficients T, are expressed via the Christoffel symbols:

1 Ja, Jay, Jask
{ - = Ipf Ysp Zkp sk 78
For = 3¢ (Oq"' T oy 0(1”) (78)

while

0 fa#~y
*Pag, = a = : 79

@Ay = Ay {1 if o =~. (79)
Thus, the Gaussian curvature of these subspaces depends only on the coefficients @ij, i.e.
it is fully determined by the kinematical structure of the system [see equation (75)]. In
case of inertial motions, the trajectories of the representative particle must be geodesics of
the configuration space. Indeed, as follows from (74):

dr dr

= —5=0if =0, and |v| =

dt ~ ds

§| = Const #0 (80)

where s is the arc coordinate along the particle trajectory:

ds = aij(iqi(lqj (81)
But then: ;
ar _
ds - o (82)

which is the condition that the trajectory is geodesic.
If the Gaussian curvature (77) which is uniquely defined by the parameters of the
dynamical system @ij, is negative:

G <0 (83)
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then the trajectories of inertial motions of the system originated at close, but different
points of the configuration space diverge? exponentially from each other, and the mo-
tion becomes unpredictable and stochastic.  Some examples of orbital instability inin-
ertial,potential and general motions as well as other types of instability are disc ussed by
M. Zak [11].

Turning back to the motion of the particle M on a smooth pscudosphere (Fig. 2),
let us depart from inertial motions and introduce a force F acting on this particle. For
noninertial motions (F # O) the trajectories of the particle will not be geodesics, while the

rat e of their deviation from geodesies is ch aract eri zed by the geodesic curvature x. It is
obvious that this curvature must depend on the forces F:

X = x(F) (84)
L. Synge (4) has shown that f the force F is potential:
F=-yn (85)

where n is the potential energy, then the condition (83) is replaced by the following:

1(0% x ON

Go+ 33"+ 357 gag ~ ij(’)qk>"i”j <O =12 (86)

Here I‘fj are defined by Eqs. (78), and n' are the contravariant components of the unit
normal n to the trajectory.

The geodesical curvature X in (86) can be expressed via tilt? potential force F:

F-n___yn-n

2w 2W (87)
As follows from (86) and (87), the condition (86) reduces to (83) if F = O.
Suppose for example, that the following elastic force:
F = —a’e,a?=Const (88)

proportional tothenormal deviation e from the geodesic trajectory is applied to the
particle M moving on the smooth pseudosphere. If the initial velocity is directed along one
of the meridians (which are all ge(‘)(lesics), the unperturbed motion will be inertial, and
its trajectory will coincide with this meridian sine.tl there e =- O, and therefore, F = O. In
order to verify the orbital stability of this motion, let us turn to tile criterion (38). Since:

on
x = 0, and b—q—k = FF=0 (89)
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for the unperturbed motion, one obtains the condition for orbital stability:

2
Go + 5(“;1; >0, ie a? < —2WG, G <0 (90)
whine
1,
w = 57”“0 (91)

As in the case of inertial motions, the inequality:

o < —2WG (92)

cads unpredictable (stochastic) motions which are characterized by:
leads to unpredictable (stochast t hicl 1 t 11

0 =1/Gy— == = Const >0 (93)

For pureinertial motions (o = 0), Eq. (93) reducesto Eq. (64).

After the discovery of chaos, the stochastic motions which are generated by the in-
stability and are characterized by posi tive Lyapunov exponents, are called chaot it.. Hence,
the inequalities (83) and (86) can be associated with criteria of chaos: if the left hand part
in (86) is bounded away from zero by a negative number -1l in all the configuration space
where the motion can occur, them the? motion will be chaotic, and its positive Lyapunov
exponent will be:

o > D? (93)

Unfortunately, this criterion is too “strong” to be of practical significance: it is sufficient,
but not necessary. Indeed, this criterion assumes that not only global, but also the local
Lyapunov exponents are positive in any point of the configuration space, At the same time,
for many chaotic motions, local Lyapunov exponents in cert ain domains of the configuration
spare? are all negat ive, or zero, although some of t I e global exp onents are still posit ive.

Following J. L. Synge[4], the results for the orbital instability of inertial and potential
motions for a system of material points can be generalized to arbitrary motions [11].

Thus, there are some domains of dynamical parameters where the motion cannot be
predicted because of instability of the solutions to the corresponding governing equations.
How can it be interpreted? Does it mean that the Newton's laws are not adequate? Or is
there something wrong with our mathemat i cal models? In order to answer these questions,
we will discuss some general aspects of the concept of instability, and in particular, a degree
to which it is an invariant of motion. We will demonstrate that instability is an attribute of
a mathematical model rather than physical phenomenon, that it depends upon the frame
of reference, upon the class of funct ions in which the motion is described, and upon the
way in which the distances between the basic and perturbed solutions is defined.
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Let us turn to orbital instability discussed above. The metric of configurat ion space
where the finite-degree- of-freedom dynamical system with N generalized coordinates ¢* (3 =
1,2.-. N)is represented by a unit-mass particle, was defined by Eqgs. (75) and (76). Now
there are at least two possible ways to define the distance between the basic and disturbed
trajectories. Following Synge [4], we will consider the distance in kinematical and in
kinematico-statistical sense. In the first case the corresponding points on the trajectories
are those for which time t has the same value. In the second case the correspondence
between points on the basic trajectory C and a disturbed trajectory C* is established by
the condition that P (a point on C) should be the foot of the geodesic perpendicular let
fall from P*(a point on C*) onC, i.e., here every point of the disturbed curve is adjacent
to the undisturbed curve (regardless of the position of the moving particle at the? instant
t). As shown by Synge, both definition of stability are invariant with respect to coordinate
transformations, and in both cases the stability implies that the corresponding distance
between the curves C and C™ remains permanently small.

It is obvious that stability inthe kinematical sense implies stability in the kinematico-
statical sense, but the: converse is not true. Indeed, consider the motion of a particle of
unit mass on a plain? under the influence of a force system derivable from a potential:

19
o= o+ Dy (94)
Writing down the equations of mot ion and solving them, we get:
1,
r = t' + At + B (95)
y = ¢ Sin (¢ 4 «) (96)
where A, B, C and D are constants of integration.
Let the undisturbed motion be:
1,
r = -t 4+t (97)
2
y = 0 (98)

The motion is clearly unstable in the kinematical sense. However, from tht? viewpoint of
stability in the kinematico-statical sense, the distance bet ween corresponding points is:

PP =y = CSin(t + D) (99)

remains permanently small if C is small. Hence, there is stability in the kinematico- statical
sense.

Thus, the same motion can be stable in one sense, and unstable in mother, depending
upon the way in which the distance between the trajectories is defined.

21




It should be noticed that in both cases, the met ric of configuration space was the same
(see Egs. (75) and (76). However, as shown by Synge [4], for conservative systems, one
can introduce a configuration space with another metric.

mn = (E - r])amn (IOO)

whine a,, arc expressed by Eq. (75), and E is the total energy.

The system of motion trajectories here consists of all the geodesics of the manifold.
The correspondence between points on the trajectories is fixed by the condition that the
arc O* P*should be equal to the? arc OP, where O and o0* are arbitrarily selected origins
on the basic trajectory and any disturbed one, respec tively.

A s shown by Synge, the problem of stability here (which is called gtability in the
action sense) is that of the convergence of geodesics in Riemannian spare. If two geodesics
pass through adj acent points in nearly parallel direct ions, the distance between points on
the geodesics equidistant from the respective initial points is either permanently small or
not. If not, there is instability. It appears that stability inthe action sense may not be
equivalent to stability in the kinematico-statical sense for distances which change the total
energy E.

Turning to the example, Eq. (94), let us take the initial point O at the origin of
coordinates and the initial point O* on the y axis. Thenthe dist urbance being infinitesimal,
the (action) distance between corresponding points is:

P* = (E-mY?y = 272t + 1) C Sin(t + D) (101)

Hence, the motion is unstable in the action sense.

Dynamical instability depends not only upon the metricin which the distances be-
t ween trajectories are defined, but also upon the frame of reference in which the motion is
described.

For instance, as noticed by Arnold [1], an inviscid stationary flow with a smooth
velocity field (in Eulerian representation):

v, = Asinz+Ccosy, vy = Bsinaz+Acosz, v: =Csiny+Bcosz (102

has chaotic trajectories x(t), y(t), z(t) of fluid particles (Lagrangian turbulence) due to
negat ive curvature of the configuration space which is obt ained as a finite-dimensional
approximation of a continuum. Thus, the same motion is stable in the eulerian represen-
tation, but is unstable in the Lagrangian one.

In order to demonstrate the instability dependence upon the class of functions in which
the motion is considered, start with an example of a vertical ideally flexible inextensible
string with a free lower end suspended in a gravity field. The governing equation for small
transverse motion of the string is:

2,

o T

2,
d)iz -0 (103)

Q)
1%

|-
[ '

Q




It has the following characteristic speeds of the transverse waves propagation:

T
o= g — (104)
p
Since the tension of the string T vanish at the free end:
T =0 at S =1 (105)

where lis the length of the string, the characteristic speeds (104) vanish too at S = [, and
therefore, Eq. (103) degenerate from hyperbolic into parabolic type at the very end of the
string.

Suppose that an isolated transverse wave of small amplitude was generated at the
point of suspension. The speed of propagat icm of t he leading front of the transverse wave
will be smaller than the speed of the trailing front because the tension decreases from the
point of suspension to the free end. Hence, the length of the? above wave will be decreasing
and in some cases will tend to zero. t hen accordiiig to the law of conservat ion of energy,
the specific kinetic energy per unit of length will tend to infinity producing a map (snap
of a whip).

As shown by M. Zak [11], a formal mathematical solution to Eq. (103) is stable in
the? open interval (which does not include the end):

0 <z <«¢f
but it is unstable in the closed interval:
0 <2 <{

However, the. stable solution does not describe the snap of the whip, while the unstable
solution does!

Thus, the properties of solutions to differential equations such as existence, unique-
ness and stability, have a mathematical meaning only if they arereferredtoa certain
class of functions, Most of the results concerning the propert ies of solutions to different 1al
equations require differentiability (up to a certain order) of t he funct ions describing the
solutions. However, the mathematical restrictions imposed upon the class of functions
which guarantee the existence of an unique and stable solution, do not necessarily lead to
the best representation of the corresponding physical phenomenon. Indeed, turning again
to Eg. (103), onenotices that the unique and stable solution does not describe a cum-
mulat ion effect (a snap of a whip) which is well pronoun cccl 11 experiments. At the same
time, an unstable solution in a closed interval gives a qualitative description of this effect.
Hence, pure mathematical restrictions imposed upon the solutions are not always consis-
tent, the long- term instability in classical dynamics discussed above, can be interpreted
as a discrepancy between these mathematical restrictions and physical reality. This means
that unpredictabilit y in classical dynamies is a price paid for mathematical “ convenience”
in dealing with dynamical models. Therefore, the conecept of unpredictability in dynamies
should be put as unpredictability in a selected class of functions, or in a selected metrics
of configuration space, or in a selected frame of reference.
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In this connection one should notice that the governing equations of classical dynamics,
and in particular, of continuous systems, inaddition to Newton’s laws, are based upon a
pure mathematical assumption that all the functions describing the system motions, must
be differentiable “as many times as necessary”. Butsince this assumption is not always
consistent with the physical nature of motions, such an inconsistency leads to instability
(in the class of smooth functions) of the governing equations[11].

Hence, the occurrence of chaos or turbulence in description of mechanical motions
means only that these motions cannot be properly described by smooth functions if the
scale of observations is limited. These arguments can be linked to Godel’s incomplete-
ness theorem(3], and the? Richardson’s[7] proof that the theory of elementary functions in
classical analysis is undecidable.

Thus, since instability is not an invariant of motions, the following question can be
posed: is it possible to find such a new (enlarged) class of functions, or a new metric of
configuration space, or a new frame of reference in order to eliminate instability? Actually
such a possibilit y would lead to different represen tat ive paramet ers describing the same
mot ion in'such a way that small uncert aint ies in ext ernal forces cause small changes of these
parameters. For example, in turbulent and chaot ic mot ions, mean velocit it?s, Reynolds
stresses, and power spectra, represent st able” parameters, although classical governing
equations neither are explici tly expressed via these paramet ers, nor uniquely define them.

The first step toward the enlarging of the class of functions for modeling turbulence
was made by O. Reynolds (1895) [6] who decomposed the velocity field into the mean and
pulsating components, and actually introduced a multivalued velocity field. However, this
decomposi tion brought new unknowns without addit ional governing equations, and that
created a “ closure” “problem. In 1986 Zak[li] has shown that the Reynolds equations
can be obtained by referring the Navier-Stokes equations to a rapidly oscillating frame of
reference, while the Reynolds stresses represent t he cont ribut ic m of inertia forces. From
this viewpoint the “closure” has the same status as ”proof” of Euclid’s parallel postulate,
since the motion of the. frame of reference can be chosen arbitrarily. In other words, the
’closuiw” of Reynolds equations represents a case of undecidabilit y in classical mechanics.
However, based upon the interpretation of the Reynolds stresses as inertia forces, it is
reasonable to choose the motion of the frame of reference such that the inertia forces
eliminate. the original imitability. In other words, the enlarged class of functions should
be selected such that the solution to the original problem in that class of functions will
not possess an exponential sensitivity to changes in initial conditions. This stabilization
principle has been formulated and applied to chaotic and turbulent motions by Zak [1 1]. As
shown there, the motions which are chaot ic (or turbulent) in the original frame of reference
can be represented as a sum of the “mean” motion and rapid fluctuations, while both
components are uniquely defined. It is worth emphasizing that the amplitude of velocity
fluctuation is proportional to the degree of the original inst abilit y, and therefore, the rapid
fluctuations can be associated with the measure oft he uncertaint y in the description of the
motion. It should be not iced that bot h “ mean” and “ fluct nat ion” components representing
the originally chaotic motion are stable, i.e., they are not sensitive to changes of initial
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conditions, and are fully reproducible.
7. CHAOS IN FAST OSCILLATING FRAME OF REFERENCE

Formally, chaos is caused by instability of trajectories (orbital instability). If the ve-
locity of a particle is decomposed as ¢ = v7 (7 is the unit vector along the trajectory),
then orbital instabilities are identified with instabilities of 7. In other words, the orbital
instability leads only to redistributions of the energy between different coordinates, and
it can be associated with an ignorable variable which does not contribute into kinetic en-
ergy. Therefore, an unlimited growth of this variable does not violate the boundedness
of energy. That is wily the orbital instability may notlead to classical attractors and
chaos can emerge . In dissipative systems the persisting instability can be ”balanced” by
dissipative forcesin a sense that exponentially diversing trajectories are locked up within
a cont ratting phase-space volume, and this leads t o chaot ic attract ors. In both conserva-
tive and dissipative systems, exponential divergence of trajectories within a constant or a
contracting volume causes their mixing, so that the motion cannot be traced unless the
initial conditions are known to infinite accuracy. It means that in configurat ion space,
two different trajectories which may be initially indistinguishable (bee.aus; of finite scale
of observat ion), diverge exponent idly, so t hat a “real” t raject ory can fill up all t he spacing
bet ween these exponentially diverging trajectories. In other words,in the. domain of ex-
ponential inst ability, each trajectory “multiplies”, and therefore, the predicted trajectory
become mult ivalued, so the velocit ies can be considered as ran dom variables:

i = ¢'(t,e), 0<e <1 (106)

where ¢ and € for a fixed t are a function and a point on a probability space, respectively.
Let us refer the original equations of motions to a mme-inertial frame of reference which
rapidly oscillate? with respect to the original inertial frame of reference. Then the absolute
velocity ¢ can be decomposed into the relative velocity ¢;and the transport velocity
42 = 2q2(0):

q=q1 + 20 coswt, w — 00 (107)

while ¢; and ¢2 are "slow” functions of time in the sense that

IS 71 (108)

where 7 is the time scale upon which the changes ¢; and ¢;(,) can be ignored.

Then for the mean ¢:

o
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t>r 1
q = q; since / G2(0) COSWEdL > —(y(o)sinwt — 0 if w — o0 (109)
w
o

In other words, a fast oscillating velocity practically does not change the displace-
ments.

Taking into account that

w

2njw nfw 27w
5 / q1dt >~ qy, / Q2(0) sinwtdt = O, / {2(0) cOswitdt = 0 (110)
T Jo 0 6

2nfw 1
2 2 :2
and 50y cos” widt = —qs
/O 42(0) 5 92(0)
one can transform a system:

(I'Ti—(l.l']'*—bl 1‘111,1':1’2’...” (111)

Jm

into the following form:

CHES ; b;mi " ,+l);mrl.v’" i71L,2,-n (112)

where Z'and iz’ are means and double- correlat ions of * as random variables, respec-
tively.

Actually the transition from (111 ) to (1 12) is identical to the Reynolds transformation:
indeed, being applied to the Navier-St ekes equations, it leads to the Reynolds equations,
and thexefole the last terms in (112) (which is a contribution of inertial forces due to fast
oscillations of the frame of reference) can be identified with the Reynolds stresses. From a
mathematical viewpoint, this transformat ion is int erpretable as an enlarging the class of
smooth funct ions to mult ivalued ones. haled, as follows from (108), for any arbitrarily
small interval At, there always exists such a large frequency w > At/2x that within this

interval the veloci t y ¢ runs t hrough all its values, and actually the velocity field becomes
multivalues.
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The most significant advantage of the Reynolds-type equations (112) is that they are
explicitly expressed via the physically reproducible parameters #-", '« which describe, for
instance, a mean velocity profile in turbulent motions, or a power spectrum of chaotic
attractors. However, asa price for that, these equations require a closure since the number
of unknowns in there is larger than the number of equations. .4 ctually the closure problem
has existed for almost hundred years since the Reynolds equations were derived. Inthe
next sections, based upon the stabilization principle introduced by Zak, M. [1 1] this problem
will be discussed.

Some comments should be made concerning t he Reynolds t ransformation of the La-

grange equation (59). Their explicit form:

('1'7‘ _+_ Pz‘nnq‘”lq'n — QT’ QT‘ — 5:1_7 (113)

in general, is nonlincar with respect to both the coordinates ¢” and the velocities ¢" since

111rnn = F;m(ma"'qn)an = rl((]],"'l,,) (114)

However, as follows from Eqs. (107), the fluctuations of the coordinates are much
smaller than tht? fluctuations of the velocities:

1.
q2(0) ™~ 5(12(0), w — 00, (115)

and therefore, they can be ignored.

Consequently, after the Reynolds transformation, Eq. (113) are presented in the form:

qr + P;lnqmq" = Qr + in)’ Q(rz) = r:;z1x;f;;7(_j;; (116)

where g" = ¢f is the mean value of the coordinate ¢", and ¢"d"is the ﬂvel'agged p roduct
of the flue.tuatim velocities, and the Reynolds force QZi)represents the contribution of
inertia caused by the transport motion of the frane of reference.

Actually the transformation from (113) to (116) can e based upon the axiomatically
introduced Reynolds conditions:

a+b=a+0b, ab=7db+al if a= a+ d,ete. (117)
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In a particular case

rr,=0 (118)
i.e., when the configurat ion space is Euclidean,
Q=0 (119)

and the nonlinearities of coordinates cannot be ignored any more. Representing ¢" in the
form:

Q"G .qd) =6 (1), Qi Qn=1Q7 7 . ¢)— Q"(7) (120)

one obtains instead of Eq. (1 16):

7= Q" (@, G + Qray (121)

8. STABILIZATION PRINCIPLE

The main purpose of the transition from the form (101) to the form (102) is to change
the representative parameters describing the motion in such a way that they become phys-
ically reproducible, i.e., mathematically stable. Hence, the next logical step is to utilize
the extra- variables, i.e., the Reynolds stresses, for elimination of the original instability.
bother words, onecan seek such an additional relationships:

So(wiw]aiiajj""):o (122)

which makes the system (1 12), (122) stable. Obviously, in this posedness of the problem,
the solution to the system (112), (122) is not unique: the? system can be overstablized to
any degree, while each of these stable solutions will have physical meaning. But for the
best solution one has to minimize the uncertainties represented by the Reynolds stresses,
and therefore, the system should be brought to the boundary of inst abilit y. Since the
orbit al inst abili t y causing chaos is charact erized by posit ive Lyapunov exponents /\f, One
should select the Reynolds stresses in (1 12) such that

AF =0 (123)




while keeping the rest of the Lyapunov exponents without changes:

A= X0 AT = A7 (124)

where A2, A7, A7 and ] are non-positive Lyapunov exponents of the system (112), (122)
and equation (111), respectively.

Clearly, those components of the Reynolds stresses which do not affect the Lyapunov
exponents, must be omitted. In general, the solution to equations (102)-(105) will eventu-
ally approach a set of periodic attractors which "replaces” the chaotic attractor of equation
(101 ). However one should consider these sets not as an approximation to the original
chaotic attractor, but rather as a different way of mathematical representation of the same
physical phenomenon. This representation is provided by a new frame of reference whose
oscillations are coupled with the dynamical variables such that the inertia forces (i.e. the
Reynolds, stresses) generated by transport motion, eliminate the original instability. In
other words, the new frame of reference provides the best “view” of the motion.

The decomposition (102) applied to equation (101), generates notonly pair correla-
tions z'x7, but also correlations of higher order, such as triple correlations xizi ¥, quadru-
ple correlations x'xlx*2z™ ete. Indeed, multiplying equation ( 101) by z¥ and averaging
and combining the resul ts, one obt ains the gover ing equations for the pair correlations
ik,

xigk :a};z:i;z:k + afzixt + b}m(xkxjgr'” + akai g™ 4 gkamg?)

+ bjm(2izdaz™ + 2wl 3" + sl ),

which cont ain nine addit ional t riple correlat ions x * 29 "

Now the application of the stabilization principle will lead to the system (112)-(125)
which will define #*, z* #J and those components of triple corrections rizJz™ which af-
fect the Lyapunov exponents in equations (123) and (124). Hence, the solutions to the
systems (1 12)-(124) and (1 12)-(125) can be regarded as the first and the second approx-
imation, respect ivel y, to the problem. Theoretically speaking, by considering next order
approximations, a complete probabilistic structure of the solution to equation (111) can
be reproduced.

Applications of the stabilization principle is significantly simplified for those systems
whose boundaries of instability can be formulat ed analytically. Fox some cases of con-
servat ive chaos and simple t urbulent flows new reprresent at ions of solutions were given by

Zak, M.[11].
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In the next section we will demonstrate application of the stabilization principle to
some dissipative chaotic systems by numerical elimination of positive local Lyapunov ex-
ponent s.

9. APPLICATION OF THE STABILIZATION PRINCIPLE TO REPRE-
SENTATION OF CHAOS

a. Inertial Motions

In order to clarify the mainidea of the approach, let us turnto the inertial motion of
a particle M of unit mass in a smooth pseudosphere S having a constant negative curvation
(64). As shown there, the orbital instability, and therefore, the chaotic behavior of the
particle M can be eliminated by the? elastic force (88).

F = —a%¢ ,0® = const. > —2WG, G < 0O (126)

proport ional to the normal deviat ion € from the geodesic t raject ory which is applied to the
particle M. But such a force can appear as an inertial force if the motion of the particle M
is referred to an appropriate non-inertial system of coordinates.

Indeed, so far this motion was referred to aninertial system of coordinates q1, q2,
where ¢; is the coordinate along the geodesic meridians, and ¢, is the coordinate along
the parallels. Let us introduce new a frame of reference which rotates clout the axis of
symmetry of the pseudosphere with the readily oscillatory transport velocity:

€ = 2€é cos wt, w— (127)
so that the components of the resultant velocity along the meridians and parallels are,
respectively:

v1 = ¢, vy = G2 4 2€ cos wi (128)
since EqQ. (128) has the same structure as Eq. (107), the Lagrangion of the motion of
the particle M relative to the new (non-inertial) frame of reference can be written in the
following form:(see Eq. 72):

. 1 2SS ¢ .
L* = g = e V700G + &) (129)
70
The last term in Eq. (252) represents the contribution of the inertia forces in the new
frame of reference.

So far the transport velocity €y was not specified, and therefore, the Lagrangion (129)
has the same element of arbitrariness asthe governing equations (112) describing chaotic
motions.

Now, based upon the stabilization principle, we are going to specify the transport
motion in such a way that the original orbital instability of the inertial motion of the
particle M is eliminated. Turning to the condition (90), one obtains:

32
%—j— > —2WG (130)
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where W = -;-vg is the kinetic energy of the particle. This condition can be satisfied if

the transport velocity €o is coupled with the: normal deviation e as following:

_.61__6—2\/:mq1 & — —WGog?2 (131)
70

As follows from Eq. (93), in this limit case the Lyapunov exponent of the relative motion
in the new (non-inertial ) frame of reference will Ix | zero:

i . 0*L
o = \/”Go*ﬁ; =0, 0 = Fot (132)

and the trajectories of perturbed motions do not diverge. The normal deviation from the
trajectory of tht? relative motion (in case of zero perturbed velocity €0) can be written in
the following form:

g2 = q3 - Const , g5 = ¢(t = 0) (133)

which means that in t he new frame of reference an i nitial error €g does not grow - it remains

const ant. The relative mot ion along the t raject ory is described by the differential equation
following from the? Lagrangion (120) which takes the following form (after substituting Eq.
(131).

1.e.,
_ 2V/=Gy C—-z\/—(;Egld? = 0
v

e (135)

But the original (unperturbed) motion was directed along the meridians, i.e., ¢= 0.
Consequently,

4370, ¢1 = U, = Const (136)
i.e., the relative motion along the trajectory is constant.
However, this velocit y is different from the original velocit y V.. Indeed, the total

kinetic energy of the particle now consists of the kinetic energy of the motion along the
trajectory, and the kinetic energy of transverse fluctuations expressed by Eq. (131), i.e.

2 2 2
Yo oY% Yoo g 137
5 =5 + 5 (@) Gl (137)

whence:

Vg = Vg4/1 — ((]8)2 | G() | < g (138)
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Thus, the original unstable (chaotic.) motion is decomposed into the mean motion
along the trajectory ¢; = const with the? constant veloeity (129), and transverse fluctuations
whose kinetic energy is proportional to the original error ¢J and to the degree Of instability
|Gol. 1t is important to emphasize that both components of the motion are stable in a
sense that initial error in g2 at t = O does not grow, and initial ervorin¢; at t = O grows
lincarly with time.

Obviously the mean, or averaged motion represents a macroscopic view on the particle
behavior extracted from the microscopic world, while the irreversibility of this motion is
manifested by thé loss of the initial kinetic energy to microscopic flue.tuaticms.

It should be emphasized that the decomposition of the motion into regular and fluctu-
ation components was enforced by the stabilization principle as a supplement to Newtonian
mechanics (see Eq. (131)), while without this principle any theory where dynamical insta-
bility can occur is incomplete.

b. Potential Motions

Based upon Eqgs. (116), for potential motions, the governing equations can be written
inthe following form:

§* + Tgd’d® = “ag T (139)
o e (140)
oq~

where n is the pot ent ial energy of the dynamical system, and Qf) are the inertia forces (or
the “ Reynolds stresses” caused by the rapidly oscillating transport motion of the frame of
reference,

For simplicit y, we will confine ourselves by a t wo-dimensional dynamical system as-
suming that o = 1, 2.

Following the same strategy as those applied to inertial motions, let us couple the
inertia forces with tht? parameters of the dynamical system in such a way that the original
orbital instability (if it occurs) is eliminated. For that purpose, first we will represent this

forces in the form:
o« Or](i) (141)
Q== By
where N(;) is a fictitious potential energy equivalent to the kinetic energy of the fluctuations.
Then, turning to the criteria of local orbital stability (86), one finds this potential energy

M), and consequently, the inertia forces Q?i) from the condition that original local orbital
instability is eliminated:

v(ﬂ + ”(:) |+ 1)) ¢ 0+ D) —_—
:]: E . Tk 04,j=1,2.

G+3 : 0oy ij qu vind i,]
(142)




Here W, G, and Ffj are defined by the parameters of the dynamical system (1 16) via
Eqs. (75), (77) and (78), respectively, andn;arethe contravariant components of the unit
normal 1 to the trajectory of the basic func tion.

Eq. (142) contains only one unknown n, which can be found from it, and that will
define the inertia forees, or the “Reynolds stresses” (141)

It should be noticed that unlike the case of the inertial motion of a particle ona
pscudosphere, here? the G oeussian curvat ure G, as wellas the gradients of the potential
energy n, are not constants, and consequently, the local Lyapunov exponents may be
different from the global ones. This means that the condition (142) eliminates local positive
exponents, and therefore, the solution to Eqs. (139) and (142) represents an over stabilized
mot ion. Obviousl y, eliminat ion of only global posit ive L y apunov exponents would lead to
solutions with less uncertainties while some of local exponents in certain domains of the
phase space may even remain positive. However, the strategy for elimination of global
positive exponents is more sophisticated, and it can be implemented only numerically.

It is worth noting that Eq. (142) is simplified to the following:

1 02({_1 + [_](i)) .
G — n'n = 0, 143
t 2w [ 0qt0q’ (143)
if the basic motion is characterized by zero potential forces
o
(9(1" 0 (144)

It may occur, for instance, when the dynamical system is in a relative equilibrium with
respect to a moving frame.

Thus, as in the previous case of inertial motion of a particle, here the Lagrange
equations (139) are supplemented by t he addit ional const raint (142 ) following from the
stabilization principle. It is important to emphasize? that this constraint is effective only
in case of orbital instability of Eq. (139); otherwise it is satisfied automatically.

As an illustration to the case of potential system, we will consider the motion of a
charged particle (charge —e, mass m)in a uniform magnetic field, B in the vicinity of a
metallic sphere (radius «) biased to a potential V> 0:

mv=—-ev XB-|eyv (145)

where v = 4L is the velocit y of the particle, and v = %o (a/p) is the electrical potential due

to the sphere.
Eq. (145) can be written in a dimensionless form:
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Vy = —-:,S—Uy, Vy = ——:‘,; + Vg, Uy = ——;3, (146)
Ve =L, Uy =Y, V=2, (247)

where

, T=wet, A =evga/mw?, w=eB/m

S| =

As reported in [2], there are certain domains of init ial conditions which lead to chaotic
trajectories. The system is chaotic, for instanceat x = 1.5;y=0, 2= 4.0, x;=vy=v, =0
at t = 0. We have? reproduced these resul ts (see Fig. 1) by solving Eqs. (146), (147)
numericall y.

The implementation of the stabilization principle, i.e. simultaneous solution of Eqs.
(146) and (147) (after their Reynolds decomposition into the form (139)) and the constraint
(142) were performed numerically. The numerical strategy was very simple: along with
the basic solution, a perturbed solution were calculated and compared with the basic one
after certain tire? steps;if the perturbed solution diverged faster than prescribed time -
polynomial, then an appropriate Reynolds force was applied to suppress it; otherwise no
actions were taken. The resulting trajectories in tile same z,y, z - phase space are plotted
in Fig. 2. These trajectories represent an averaged, or expected motion which is not
chaotic any more. It is important to emphasize that this motion is stable in the sense that
small changes of the initial conditions will cause small changes in the motion.

Actually this example elucidates the mechanism of transition from the Hamiltonian
mechanices describing fully reversible mechanical processes on the microscopic level, to
irreversible macroscopic mot ions describing t berm dynamical rocesses. On the. same line
of argumentation, the stabilization principle implements the preference to more probable
states of the system over the less probable states.
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DISCUSSION AND CONCLUSION

The problem of irreversibility in thermodynamics was revisited and analyzed on the
microscopic, stochastic, and macroscopic levels of description. It was demonstrated that
Newtonian dynamics (as well as any dynamical theory where chaotic solutions are possible)
can be represented in t he Reynolds form when eat.] 1 dynamical variable is decomposed into
the mean and fluctuation components. Additional equations coupling fluctuations and the
mean values follow from the st abilizat ion principle formul ated in [11] and briefly described
in the previous sections. Tilt? mainidea of this print.iplt? is that the fluctuations must be
selected from the condition that they suppress the original in st abilit y down t o a neutral
stability. Supplement ed by t he st abilizat ion principle, the H a milt onian, or Largranian for-
malisms can describe the transition from fully reversible? to irreversible motions as a result
of the decomposition of chaotic motions (which are very likely to occur in many - body
problems) into regular (macroscopic) motions and fluctuations. Actually the stabilization
principle implements the preference t o more probable states of the syst em over the less
probable states, and from that viewpoint it can be associated with the averaging procedure
exploited in statistical mechanics. However, the averaging procedure was always consid-
ered as an “alien intrusion” into the classical mechanics, and that caused many discussions
around the? problem of irreversibilit y on t he macroscopic level. On the contrary, the sta-
bilizat ion principle is a part of Newtonian mechaniecs (as well as a part of any dynamical
theory where chaotic motions can occur), and therefore, it provides formal mathematical
explanation for the transition from fully reversible to irreversible processes.

On the stochastic level of description, new phenomenol ogical foree with non-Lipschitz
properties is int roduced. This force as a resultant of a large number of collisions of a
selected particle with other particles, has characteristics which are uniquely defined by the
t hermodynamical paramet ers of t he process under considerat ion, and it represents a part of
the mathematical formalism describing random-walk-like processes without invoking any
probabilistic arguments.

Additional non-Lipscitz thermodynamical forces were incorporated into macroscopic
models of transport phenomena in order to introduce a time scale. These forces art? effective
only within a small domain around equilibria. Without causing any changes in other
domains, they are responsible for finite time of approaching equilibria. Such a property
is very important, forinterpretation of irreversibi lit y on t he macroscopic scale. Indeed,
there is always an extremely small (lint non-zero) probabilit y that a particle performing
a random walk canreturnto its original position passing through all of its previous steps
backward, and therefore, this effect should not be excluded from the solutions to the
macroscopic equat ions if they are observed during i nfinit ely large period of time. However,
t hese pract icall y unrealist ic sit uat ions may be excluded from t he considerat ion in case of
the modified macroscopic equations since they are characterized by a limited time sale,
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